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We investigate the decay of freely evolving isotropic turbulence. There are two
canonical cases: E(k → 0) ∼ Lk2 and E(k → 0) ∼ Ik4, L and I being the Saffman and
Loitsyansky integrals respectively. We focus on the second of these. Numerical simula-
tions are performed in a periodic domain whose dimensions, lbox , are much larger
than the integral scale of the turbulence, l. We find that, provided that lbox � l and
Re � 1, the turbulence evolves to a state in which I is approximately constant
and Kolmogorov’s classical decay law, u2 ∼ t−10/7, holds true. The approximate
conservation of I in fully developed turbulence implies that the long-range interacti-
ons between remote eddies, as measured by the triple correlations, are very weak.
This finding seems to be at odds with the non-local nature of the Biot-Savart law.

1. Introduction
It has been known since the classical work of Birkhoff, Batchelor and Saffman

(Batchelor 1953; Birkhoff 1954; Batchelor & Proudman 1956; Saffman 1967) that
there are two canonical problems in decaying, isotopic turbulence. On the one hand we
might have a Birkhoff–Saffman spectrum, E(k → 0) = Lk2/4π2, where L =

∫
〈u · u′〉 dr

is known as Saffman’s integral. (Here u and u′ are the velocities at two points
separated by the displacement vector r .) Saffman showed that L is an invariant of
this motion, reflecting the global conservation of linear momentum, and that, as a
consequence, the kinetic energy of the turbulence, 1

2
〈u2〉 = 3

2
u2, decays as u2 ∼ t−6/5.

On the other hand, in those cases where L =0 we usually have E(k → 0) = Ik4/24π2,
where I = −

∫
r2〈u · u′〉 dr is known as Loitsyansky’s integral. Whether turbulence is

of the Batchelor (E ∼ k4) or Saffman (E ∼ k2) type depends on the initial condition. If
the turbulence is created by a mechanism which imparts a significant amount of linear
impulse to the fluid, then L is non-zero and E(k) ∼ k2. Conversely, if the turbulence
is created with little linear impulse then the initial value of L is zero and, since L

is an invariant, it stays zero. Either form of turbulence may be created in computer
simulations, but it is an open question as to which is more prevalent in nature. Note
that the fact that I = 0 does not necessarily imply that E ∼ k4, since E ∼ kn , 2 <n< 4,

is also a theoretical possibility (see, for example, Birkhoff 1954 or Eyink & Thomson
2000). However, there are reasons for believing that n= 2 and n= 4 have a special
status in real turbulence. For example, for n= 2 and n= 4 the pre-factors multiplying
kn have simple physical interpretations in terms of the linear and angular momentum
of the turbulence, and the invariance of these pre-factors, when applicable, is simply
related to the conservation of these physical quantities (see, for example, Davidson
2004). This is not true for values other than 2 and 4. Also, the spectrum tensor is
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singular at k = 0 for all n other than 4. In any event, turbulence which starts as k2

stays as k2, and turbulence which starts as k4 (or steeper) stays as k4.
In this paper we restrict ourselves to Batchelor (E ∼ k4) turbulence. We are interested

in the behaviour of Loitsyansky’s integral, I (t), and in the associated question of the
decay exponent in the energy decay law u2 ∼ t−m. These issues have been a source of
much debate and controversy and so, to place our work in context, we start with a
brief description of the competing theories.

1.1. The classical theories of freely decaying isotropic turbulence

In a little discussed paper Kolmogorov (1941) predicted that isotropic turbulence
should decay as u2 ∼ t−10/7. He made three assumptions: (i) the energy decays
as du2/dt = −Au3/l, where l is the integral scale and A is independent of time;
(ii) the large scales (but not the whole spectrum) evolve in a self-similar manner
when r is normalized by the integral scale; and (iii) Loitsyansky’s integral is constant.
Combining (ii) and (iii) gives I ∼ u2l5 = constant which, when substituted into the
energy equation, yields u2(t) ∼ t−10/7, l ∼ t2/7. These are Kolmogorov’s decay laws.
Note that, although Kolmogorov assumed self-similarity of the large scales, it is
sometimes claimed that such an assumption is not needed. The idea is that a new
integral scale, l̂, is defined via the expression I ∼ u2 l̂5 and then combined with
du2/dt = −Cu3/l̂, where C is a constant, to give the 10/7 decay law. However, the
empirical law du2/dt = −Au3/l, A= constant, has only been verified for l defined in
the more conventional way, as the integral of the longitudinal correlation function. If
the turbulence is not self-similar then we have no right to replace du2/dt = −Au3/l,
A= constant, by du2/dt = −Cu3/l̂, C = constant. Thus, one way or another, self-
similarity of the large scales is required.

While assumptions (i) and (ii) have been verified experimentally and are rarely
questioned, the third has been heavily criticized. The claim that I is an invariant
originated with Loitsyansky (1939) who noted that the Kármán–Howarth equation

∂

∂t
[u2r4f (r, t)] = u3 ∂

∂r
[r4K(r)] + 2νu2 ∂

∂r
[r4f ′(r)] (1.1)

may be integrated to give

d

dt

[
u2

∫ ∞

0

r4f (r) dr

]
= [u3r4K]∞ + 2ν[u2r4f ′(r)]∞, (1.2)

where u2f (r) = 〈ux(x) ux(x + r êx)〉, u3K(r) = 〈u2
x(x) ux(x + r êx)〉 and the subscript

∞ indicates the asymptotic value at large r . If, as assumed by Loitsyansky and
Kolmogorov, remote points are statistically independent, in the sense that f and K

decay exponentially fast at large r , then

I = −
∫

r2〈u · u′〉 dr = 8π u2

∫ ∞

0

r4f dr = constant. (1.3)

So, provided the statistical correlations between remote points in a turbulent flow
are sufficiently weak, Kolmogorov’s decay laws should hold. However, as we shall
see, the strength of these long-range correlations has been hotly disputed. In any
event, Loitsyansky’s claim was given some physical basis by Landau (Landau &
Lifshitz 1959) who noted that the conservation of I could be attributed to the general
principle of conservation of angular momentum. In particular, he showed that

I = −
∫

r2〈u · u′〉 dr = 〈H2〉/V = constant (1.4)
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where H is the angular momentum in some large volume V, H =
∫

(x × u) dV .
However, like Loitsyansky, Landau had to assume that the long-range correlations
are negligible. Moreover, he assumed that the turbulence has zero net linear impulse,
thus excluding a Saffman spectrum (see, for example, Davidson 2004).

The first doubts over the validity of (1.3), and hence the 10/7 decay law, came
with the work of Proudman & Reid (1954) who showed that the quasi-normal (QN)
closure model yields

d

dt
[u3r4K]∞ = 7

10
4π

∫ ∞

0

(E2/k2) dk

in isotropic turbulence. Combining this with (1.2) and (1.3) we have

d2I

dt2
= 8π

d

dt
[u3r4K]∞ = 7

5
(4π)2

∫ ∞

0

(E2/k2) dk = 14
5

∫
〈u · u′〉2 dr (1.5)

where the final equality on the right is a consequence of Rayleigh’s power theorem. Of
course, from a dynamical point of view, the QN model is deeply flawed. Nevertheless,
random Gaussian modes represent a perfectly legitimate initial condition. The
implication is that one can create kinematically admissible velocity fields which
induce long-range interactions of the form K ∼ r−4.

The origin of the discrepancy between Proudman & Reid and Loitsyansky was
identified by Batchelor & Proudman (1956). They considered homogeneous, aniso-
tropic turbulence and adopted initial conditions in which the fourth-order cumulants,
[uiu

′
ju

′′
kul]cum, as well as the second- and third-order velocity correlations, are

exponentially small at large separation. They then looked for the growth of algebraic
tails in the second- and third-order velocity correlations immediately after t = 0. In
short, they ignored long-range correlations as far as the fourth-order cumulants are
concerned, but allowed for long-range interactions in the second- and third-order
correlations. (Note that this is not the same as the QN approximation, which requires
that fourth-order cumulants are zero for all values of r , large or small.) Their key
observation was that an eddy located at point x sets up a pressure field p′ = p(x ′)
which falls off as r−3 = |x ′ − x|−3 in the far field. Thus, for example, the pressure
fluctuations at x ′ = x + r êx , caused by the eddy at x, have an intensity p′

∞ ∼ r−3. This,
in turn, sets up a long-range correlation of the form 〈u2

xp
′〉∞ ∼ r−3. Moreover, the

triple correlations are governed by an equation of the type

ρ
∂

∂t
〈uiuju

′
k〉 = ρ∇ · [〈uuuu′〉 + 〈uuu′u′〉] − ∂

∂rk

〈uiujp
′〉 −

〈
u′

k

(
ui

∂p

∂xj

+ uj

∂p

∂xi

)〉
(1.6)

and so we conclude that the long-range velocity–pressure correlations induce
triple velocity correlations of the form 〈uiuju

′
k〉∞ ∼ Cijkr

−4. Although Batchelor and
Proudman found no long-range correlations when the symmetries of isotropy are
imposed (see p. 400 of Batchelor & Proudman 1956), it is usually assumed that
u3K(r) does indeed decay as u3K(r) ∼ C/r4 in isotropic turbulence. This implies that
I is time dependent and casts doubt on the 10/7 decay law. (Note that, if K(r)
decays as ar−4 + br−5 +O(r−6), and there are no long-range correlations at t = 0, the
Kármán–Howarth equation tells us that the double velocity and vorticity correlations
decay as r−6 and r−8, respectively.)
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P

x

P∞ ~ (4πr3)–1 ∫ [2u2
x – u2

y – u2
z]dV

Figure 1. The pressure induced at point x′ = r êx by eddies in the vicinity of point x ∼ 0.

1.2. The results of the closures and simulations

The suggestion that I should be time-dependent is also seen in certain closure
approximations. For example, EDQNM suggests

dI

dt
= 8π[u3r4K]∞ = 7

5
(4π)2

∫ ∞

k0

θ(k)[E2/k2] dk (1.7)

where k0 is of the order of l−1 and θ (k) is a model-dependent function which has
the dimensions of time. A comparison of (1.7) with the quasi-normal estimate (1.5)
shows that a time derivative has been removed as a result of Markovianization and
replaced by the model parameter θ . In effect, estimate (1.7) amounts to an assertion
that the long-range triple correlations do exist, with their strength being set by the
magnitude of the parameter θ . The EDQNM closure predicts a slow growth in
Loitsyansky’s integral, I ∼ t0.16, with a corresponding energy decay rate of u2 ∼ t−1.38.
This is somewhat slower than the 10/7 law. These results are not inconsistent with
the direct numerical simulations (DNS) of Herring et al. (2005) and the large-eddy
simulations (LES) of Chasnov (1993) and Ossia & Lesieur (2000). They are, however,
inconsistent with the DNS reported here, where we find that I (t) approaches a
constant value after an initial transient.

1.3. The physical interpretation of the Batchelor & Proudman and Proudman & Reid

Batchelor & Proudman (1956) restricted their claims about long-range correlations
to anisotropic turbulence and were unable to find any long-range interactions in the
isotropic case. However, their analysis has been extended to isotropic turbulence by
Davidson (2000, 2004), and it turns out that all the essential ideas carry over more or
less intact. We shall briefly summarize these more recent studies because it clarifies
the physical origin of expressions such as (1.5) and Batchelor’s estimate 〈u2

xp
′〉∞ ∼ r−3.

We give only the key results here, leaving the mathematical details to § 2.
Consider a collection of turbulent eddies which lie within a volume V centred on

the point x, and which form part of a larger cloud of turbulence (figure 1). The
far-field pressure induced by these eddies at point x ′ = x + r êx can be calculated by
inverting the pressure equation

∇2(p/ρ) = −∇ · (u · ∇u) = 1
2
ω2 − SijSij (1.8)

which, using (2.5), yields

p′
∞ =

ρ

4πr3

∫
[(2x2 − y2 − x2)∇ · (u · ∇u)] dx+(surface integrals over V of uiuj )+O(r−4)
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or equivalently,

p′
∞ =

ρ

4πr3

∫ [
2u2

x − u2
y − u2

z

]
dx + (surface integrals over V of uiuj ) + O(r−4). (1.9)

(Note that, throughout the paper, we take O(r−n) to mean bounded asymptotically
by a constant times r−n.) Now suppose the volume V has a characteristic radius much
greater than l but much smaller than r . It follows that, provided the fourth-order
cumulants at large separation can be neglected, so that we can dispense with the
surface integrals in (1.9), there exists a pressure–velocity correlation of the form

〈
u2

xp
′〉

∞ =
ρ

4πr3

∫ 〈
u2

x[2(u∗
x)

2 − (u∗
y)

2 − (u∗
z)

2]
〉
dx∗ + O(r−4). (1.10)

This is the origin of Batchelor’s result 〈u2
xp

′〉∞ ∼ r−3. Note that we expect the large
scales to contribute most to the integral on the right of (1.10), suggesting that it is
of the order of u4l3. It follows that 〈u2

xp
′〉∞ ∼ u4(r/ l)−3. We now combine (1.10) with

(1.6) and take advantage of isotropy. It turns out that, when fourth-order cumulants
at large separation can be neglected, only the second term on the right of (1.6) is
important for large r (see § 2), and we obtain

∂

∂t

〈
u2

xu
′
x

〉
∞ =

∂

∂t
[u3K]∞ =

3

4π r4

∫
〈ss∗〉 dx∗ (1.11)

where s = u2
x − u2

y . It follows from (1.2) that I is governed by

d2I

dt2
= 8π

d

dt
[u3r4K]∞ = 6

∫
〈ss∗〉 dr ′ = 6J, (1.12)

where r ′ = x∗ − x (Davidson 2000). The origin of the QN estimate (1.5) is now clear.
If we insist that fourth-order cumulants are zero for all r ′, large and small (and they
are definitely not), then 6J = (14/5)

∫
〈u · u′〉2

dr and (1.12) reduces to (1.5). In any

event, whether or not we adopt the QN hypothesis, (1.12) predicts that d2I/dt2 > 0,

since J is strictly positive:

J = lim
V →∞

1

V

[∫
s dV

]2

.

Note that (1.11) and (1.12) depend critically on the assumption that fourth-order
cumulants decay rapidly for large separation r . (We shall see in § 2 that, in this context,
rapidly means faster than r−7.) There is some experimental evidence to suggest that,
in fully developed turbulence, the cumulants are indeed small at large separation (Van
Atta & Yeh 1970), though it is not possible to tell if they decay faster or slower than
r−7. In any event, there are no grounds for believing that (1.11) or (1.12) apply to
the transient evolution of non-asymptotic turbulence from random initial conditions,
since we do not know how the cumulants behave in such cases.

Essentially the same results can be obtained directly form the Biot-Savart law
(Davidson 2004). Again consider our group of eddies confined to a volume V and
located near point x. If they have negligible linear impulse (we want to avoid a
Saffman spectrum) then the dipole field induced by the eddies is zero and the Biot-
Savart law gives a far-field velocity at x ′ = x + r êx of

(u′
x)∞ =

3

4πr4

∫
(x∗y∗ω∗

z − x∗z∗ω∗
y) dx∗ + O(r−5) (1.13)
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where ω is the vorticity. (Note that, once again, we have made use of (2.5).)
Differentiating with respect to time we find, after a little algebra

∂u′
x

∂t
=

3

4πr4

∫ [
2u2

x − u2
y − u2

z

]∗
dx∗ + (surface integrals of uiuj ) + O(r−5). (1.14)

It follows that, provided the second-order velocity correlations and fourth-order
cumulants at large separation can be neglected, so that we can dispense with the
surface integrals in (1.14), there exist long-range triple correlations of the form

∂

∂t

〈
u2

xu
′
x

〉
∞ =

3

4πr4

∫ 〈
u2

x

(
2u2

x − u2
y − u2

z

)∗〉
dx∗. (1.15)

We have arrived back at (1.11) and (1.12), the link between the two arguments being
that the right of (1.14) is simply the pressure gradient associated with (1.9). Once
again we conclude that I is probably time dependent. This, in turn, suggests that,
provided the large scales are self-similar, the 10/7 decay law is invalid.

1.4. Deviations from the 10/7 decay law caused by long-range interactions

The concluding statement above requires some support. The proof goes as follows.
If the energy decays as a power law, u2 ∼ t−m, and we shall see that it does at large
time, then our energy equation becomes

du2

dt
= −A

u3

l
= −m

u2

t
, (1.16)

from which we see that we are at liberty to take the integral scale as l = ut . Next, like
Kolmogorov, we assume that the large scales are self-similar, which is in line with
the experimental evidence for fully developed turbulence (Batchelor 1953). Equation
(1.2) then reduces to

d

dt
[u7t5] = λu7t4, λ = [ζ 4K(ζ )]∞

/∫
ζ 4f (ζ ) dζ (1.17)

where ζ = r/ l and λ is some unknown coefficient. Note that λ is zero if, and only if,
I is a constant. From (1.17) we have

m = 10/7 − 2λ/7 (1.18)

which confirms that any time dependence of I invalidates the 10/7 law, at least for
fully developed turbulence. Note that m is less than 10/7 when I increases with time,
and greater than 10/7 when I is a decreasing function of time. Note also that (1.16),
and hence (1.18), assumes Re �1, so the rate of loss of energy is independent of
viscosity.

1.5. Uncertainties and questions

The central observation of Batchelor & Proudman, that long-range correlations are
an inevitable consequence of the non-local pressure field, the tentative predictions of
the EDQNM closure model, and the results of the numerical simulations, make a
convincing case against the 10/7 decay law. However, a more careful analysis shows
that the situation is not so clear cut. Let us consider the analysis of Batchelor &
Proudman (1956) and its extension by Davidson (2000, 2004). All of its quantitative
predictions rest on the assumption that fourth-order cumulants decay rapidly for
well-separated points. (Recall that, in § 2 we shall see that, in this context, rapidly
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means faster than r−7.) There is no evidence that this is the case. Thus, for example,
equation (1.12) must be regarded with considerable suspicion. And even if we do
accept this equation, how are we to determine the integral J without some ad hoc
closure model? Perhaps the most we can extract from these various studies is the
observation that, as a consequence of the Biot-Savart law, there is a likelihood of
long-range interactions between distant eddies.

The results of the closures and numerical simulations are also indecisive. In
EDQNM there are many ad hoc assumptions, not the least of which is the
Markovianization procedure itself, which cannot be justified for the large scales.
It is possible, therefore, that non-Markovianized closures might perform better in
this respect, though we have no evidence of this. In any event we shall see that
there is some evidence that the evolving morphology or non-Gaussian statistics of
the vorticity field plays an important role in the behaviour of I , and this kind of
detailed information is, to some extent, absent in many closure models. The numerical
simulations may also be questioned. For example, the DNS have all been carried out
in computational domains which are only a few multiples of the integral scale, yet the
entire analysis of § 1.1 rests on the assumption that the domain is at least an order
of magnitude greater than l. The LES, on the other hand, involves a truncation of
the energy spectrum at large k and we cannot rule out the possibility that such a
truncation influences the large scales, perhaps through a change in the morphology
of the vorticity field.

All of this suggests that we should be cautious about dismissing the Kolmogorov
decay law. This opens up the intriguing possibility that the 10/7 law may indeed
represent the decay of fully developed turbulence, if not its transition from some
prescribed (and unphysical) initial condition.

Perhaps there is a clue in the simulations of Ossia & Lesieur (2000). The initial
condition in such simulations consists of random Gaussian modes with no phase
coherence, and so the vorticity field is more or less structureless. Fully developed
turbulence, on the other hand, has a very intricate vorticity field, consisting of clusters
or networks of fine-scale tube-like vortices (Kaneda et al. 2004; Kaneda & Ishihara
2006). The LES of Ossia & Lesieur tentatively suggests that the time dependence
of I , and by inference the strength of the long-range correlation [r4K]∞, decreases
as the vorticity field becomes teased out into fine-scale tubes. But why should these
long-range correlations, induced by the Biot-Savart law, progressively weaken as the
turbulence matures? This is an issue which, so far, has not been addressed in the
literature. However, we might note that analogous behaviour is seen in other physical
systems possessing many degrees of freedom. The most famous example is, perhaps,
Debye–Huckel screening in plasmas and electrolytes, where the long-range Coulomb
force between distant ions shuts down as a result of the clustering of oppositely
signed charges (Jackson 1975). Such a clustering reduces the Gibbs free energy of
the system, E- TS. (Here E is the electrostatic energy, T the temperature and S the
entropy.) Another example occurs in arrays of magnetic dipoles. Here the long-range
Lorentz force between distant dipoles is diminished through a pairing or clustering
of oppositely signed dipoles. Again, this can be viewed as an energy minimization
process, as the magnetic energy associated with the long-range forces is reduced.
Such behaviour led Ruelle (1990) to speculate that there should be an analogue of
Debye screening in turbulence, in which the two-point vorticity correlation decays
exponentially with separation, rather than the power law suggested by the Biot-Savart
law. Interestingly, he suggested that turbulence whose vorticity field consists of thin,
tube-like structures is most likely to favour such screening.
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All of these uncertainties led us to revisit this entire problem. The questions we
seek to answer are:

(i) do the fourth-order cumulants decay fast enough for (1.12) to hold?
(ii) does turbulence tend to evolve towards a state in which I is approximately

constant?
(iii) if (ii) is true, do we recover Kolmogorov’s 10/7 decay law in fully developed

turbulence?
We emphasize that these questions are not just relevant to isotropic turbulence.

Many other systems, such as homogeneous MHD turbulence, and rotating stratified
turbulence, conserve one or more components of angular momentum and hence, if
the long-range interactions are weak, possess a Loitsyansky-like invariant of the form
of (1.4). (See the discussion in Davidson 1997, 2004.) If there is evidence of the
suppression of long-range interactions in isotropic turbulence, there may be reasons
to suppose these interactions are also weak in these more complex, fully developed
flows.

2. Pressure-induced long-range correlations
As a prelude to presenting the numerical evidence, we explore the nature of the

pressure-induced long-range interactions. Our aim is to provide a detailed proof of
equations (1.11) and (1.12), which were first suggested in Davidson (2000, 2004), and
also to determine the precise conditions under which they hold. In particular, we are
interested in the restriction that the fourth-order cumulants must decay rapidly with
distance. Two important questions, which have not previously been addressed, are:
(i) how rapidly must the cumulants fall for (1.12) to be valid; and (ii) is such a fall-off
likely to be observed in practice? We attempt to answer both of these questions here.

We shall show that (1.12) holds only if the fourth-order cumulants decay faster than
r−7 at large separation, and that it is unlikely that this condition holds in general. Our
starting point is the extension of Proudman & Reid (1956) by Davidson (2004). Let us
introduce the third-order correlation Sij,k = 〈ui(x)uj (x)uk(x ′)〉. It is readily confirmed
that, if viscous forces are neglected,

ρ
∂S11,1

∂t
= −ρ

∂

∂x�

〈
u2

1u
′
1u�

〉
− 2

〈
u1

∂p

∂x1

u′
1

〉
− ρ

∂

∂x ′
�

〈
u2

1u
′
1u

′
�

〉
− ∂

∂x ′
1

〈
u2

1p
′〉 (2.1)

where S11,1(r ê1) = u3K(r) = 〈u2
xu

′
x〉 . Also, inverting the pressure equation (1.8) yields

p(x)/ρ =
1

4π

∫
1

|x∗ − x|
∂2

∂x∗
m∂x∗

n

[u∗
mu∗

n] dx∗,

p(x ′)/ρ =
1

4π

∫
1

|x∗ − x ′|
∂2

∂x∗
m∂x∗

n

[u∗
mu∗

n] dx∗,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.2)

which allows us to eliminate the pressure field from the dynamic equation for S11,1.
In particular we find

∂

∂x ′
1

〈
u2

xp
′〉 =

ρ

4π

∫
∂

∂x ′
1

(
1

|x∗ − x ′|

)
∂2

∂x∗
m∂x∗

n

[〈
u∗

mu∗
nu

2
x

〉
− 〈u∗

mu∗
n〉

〈
u2

x

〉]
dx∗

and〈
ux

∂p

∂x1

u′
x

〉
=

ρ

4π

∫
∂

∂x1

(
1

|x∗ − x|

)
∂2

∂x∗
m∂x∗

n

[〈u∗
mu∗

nuxu
′
x〉 − 〈u∗

mu∗
n〉 〈uxu

′
x〉] dx∗,
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which yields

∂S11,1

∂t
= − 1

4π

∫
∂

∂x ′
1

(
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n〉 〈uxu

′
x〉] dx∗ + ∇ · 〈uuuu〉,

(2.3)

where ∇ · 〈uuuu〉 represents terms involving the divergence of fourth-order correlations
of the type 〈uuuu′〉 and 〈uuu′u′〉.

We now follow Batchelor & Proudman (1956) and Davidson (2004) and assume
that, at t = 0, well-separated points are statistically independent. We then consider
what happens immediately after t = 0. Here statistical independence is taken to mean
that second- and third-order correlations, as well as cumulants of the form

[uiu
′
ju

′′
ku

′′′
l ]cum = 〈uiu

′
ju

′′
ku

′′′
l 〉 − 〈uiu

′
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l u′′
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k〉〈u′′′

l u′
j 〉 − 〈uiu

′′′
l 〉〈u′

ju
′′
k〉,

are exponentially small for well-separated points. It follows that, at t = 0, the terms
on the right of (2.3) of the form [〈uuuu〉 − 〈uu〉〈uu〉] will tend to zero exponentially
fast as |r∗| = |x∗ − x| becomes large. Gauss’ theorem then allows us to rewrite (2.3) as
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which, because |x∗ − x| is symmetric in x and x∗, simplifies to
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(2.4)

Let us now adopt the notation r∗ = x∗ − x and r = x ′ − x = r êx , while letting r/ l

become large. Consider the first term on the right of (2.4). It is dominated by
contributions in which x∗ ∼ x, since [〈u∗u∗uu〉 − 〈u∗u∗〉〈uu〉] is small if x∗ and x are
distant. Thus |r∗| � |r | and so we can use the expansion

1
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i r

∗
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to evaluate the integral for large r . Note that such an expansion is justified because all
integral moments of the term [〈uuuu〉 − 〈uu〉〈uu〉] are convergent at t = 0. To leading
order in r , we obtain
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Turning now to the second integral on the right of (2.4), we note that it too is dom-
inated by contributions in which x∗ ∼ x. Moreover, that part of the integrand which
takes the form [〈uuuu〉 − 〈uu〉〈uu〉] can be written as [u∗

mu∗
nuxu

′
x]cum + 〈u∗

mu′
x〉〈u∗

nux〉 +
〈u∗

mux〉〈u∗
nu

′
x〉, which is exponentially small for r → ∞. So our expression for S11,1

simplifies to

∂S11,1
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2
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x

〉]
dx∗. (2.6)

Noting that r = r êx , and that ∇ · 〈uuuu〉∞ is exponentially small at t = 0, this, in turn,
simplifies to

∂

∂t

〈
u2

xu
′
x

〉
∞ =

3

4πr4

∫ 〈
u2

x

(
2u2

x − u2
y − u2

z

)∗〉
dx∗. (2.7)

Finally we note that, with the aid of isotropy (and equation (1.2)), (2.7) may be
rewritten as

d2I

dt2
= 8π

d

dt
[u3r4K]∞ = 6

∫
〈ss∗〉 dr ′ (2.8)

where s = u2
x −u2

y . This is, of course, (1.12), which is the key result of Davidson (2000).
Notice that, so far, our analysis applies only at t = 0 when, by virtue of our choice

of initial conditions, well-separated points are statistically independent. Let us see if
we can extend the analysis to t > 0. The key point to note here is that there are two
assumptions implicit in (2.7). The first is that fourth-order cumulants at well-separated
points fall off faster than r−3, so that the term ∇ · 〈uuuu〉∞ on the left of (2.6) can
be ignored. The second assumption is that terms of the form [〈uuuu〉 − 〈uu〉〈uu〉] in
(2.3) decay sufficiently rapidly with |r∗| and |r | for: (i) the use of expansion (2.5) to be
legitimate; and (ii) the neglect of the second integral on the right of (2.4) to be valid.
Since [〈uuuu〉 − 〈uu〉〈uu〉] can be rewritten as [uuuu]cum + 2〈uu∗〉〈uu∗〉, this requires
not only that the fourth-order cumulants decay rapidly, but also that the products of
double correlations decay quickly. Both of these requirements are satisfied at t = 0 by
virtue of our choice of initial conditions, and the question at hand is whether or not
they are likely to hold for t > 0.

Now it can be shown that the use of expansion (2.5) is legitimate provided that the
term [〈u∗u∗uu〉 − 〈u∗u∗〉〈uu〉] in the first integral on the right of (2.4) decays faster
than r−7as r → ∞ (see Appendix A). A similar, though less stringent, condition is also
sufficient to ensure that we may neglect of the second integral on the right of (2.4).
That is to say, because of the presence of the term ∂3|x∗ − x|−1/∂x3 in the integrand,
and the symmetry of [〈u∗u∗uu′〉 − 〈u∗u∗〉〈uu′〉] in x and x ′, this integral is dominated
by contributions in which x∗ ∼ x. Thus, for r → ∞, [〈u∗u∗uu′〉 − 〈u∗u∗〉〈uu′〉] may be
approximated by [〈uuuu′〉 − 〈uu〉〈uu′〉], allowing us to neglect this second integral
provided that [〈uuuu′〉 − 〈uu〉〈uu′〉] decays faster than r−4.

It appears, therefore, that the double correlations do indeed fall off fast enough to
justify (2.8). That is, we know that 〈u2

xu
′
x〉∞ ∼ r−4, and it follows from the Kármán–

Howarth equation that the double correlations decay as 〈uxu
′
x〉∞ ∼ r−6 (see the final

sentence of § 1.1.), thus yielding 〈uu′〉∞〈uu′〉∞ ∼ r−12. So the validity, or otherwise, of
(2.8) for t > 0 is determined simply by the behaviour of the fourth-order cumulants
at large separation. If they decay faster than r−7, then (2.8) holds for all t .

It is not at all clear, however, that this restriction on the fourth-order cumulants
will, in general, be satisfied for all t . Consider, for example, our neglect of the term
∇ · 〈uuuu〉∞ on the left of (2.6). We dropped this on the assumption that the fourth-
order cumulants fall off faster than r−4. While valid at t = 0, by virtue of our initial
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conditions, this assumption seems unlikely to remain valid for arbitrary t , as can be
seen from the following argument. Consider the first term on the left of (2.1). Its
second derivative with respect to time contains, amongst other things, terms of the
form

∂2

∂t2

〈
u · ∇

(
u2

xu
′
x

)〉
= 2〈u · ∇(uxu̇xu̇

′
x)〉 + · · · = 2〈(u · ∇ux)u̇x u̇

′
x〉

+ · · · = 2〈(u · ∇ux)
2∂p′/∂x ′〉 + · · ·

where a dot represents a time derivative. Now consider a Taylor expansion of
〈u · ∇(u2

xu
′
x)〉 in t about t = 0. The constant term in the expansion vanishes because of

our choice of initial conditions and we have〈
u · ∇

(
u2

xu
′
x

)〉
= Ct + [〈(w2∂p′/∂x ′〉 + · · ·]t=0 t2 + O(t3), w = u · ∇ux

for some coefficient C. Now we know from the analysis above that [〈u2
x∂p

′/∂x ′〉 +
· · ·]t =0 falls off as r−4 at large r . The structural similarity between this term and
[〈w2∂p′/∂x ′〉 + · · ·]t =0 suggests, but does not prove, that the latter term may also fall
as r−4, suggesting that 〈u · ∇(u2

xu
′
x)〉 will eventually develop an r−4 tail. If this is so,

the fourth-order cumulants will fall as r−4 for t > 0, which is enough to invalidate
(2.7).

In summary then, (2.8) is rigorous at t = 0 by virtue of our choice of initial
conditions. It also applies for t > 0 if, but only if, the fourth-order cumulants decay
faster than r−7 for well-separated points. As noted in § 1.3, there is some experimental
evidence to suggest that, in fully developed turbulence, the cumulants are indeed very
small for large separation, though it is unclear whether or not they fall off faster than
r−7. On the other hand, the argument above tentatively suggests that the cumulants
could, under certain conditions, fall as r−4. If this is so, then (2.8) cannot be applied
to turbulence emerging from arbitrary initial conditions. We shall see that our DNS
suggests that (2.8) is, in general, invalid.

3. The numerical evidence
The direct numerical simulations reported here employ the spectral code described

in Kaneda et al (2004). The boundary conditions are periodic and the random initial
incompressible flow was chosen from a Gaussian ensemble with 〈u2〉t = 0 = 1 and the
prescribed isotropic energy spectrum E ∼ k4 exp[−2(k/kp)2]. The box size is 2π in each
direction and so the lowest wavenumber is kmin = 1. The details of the simulations are
given in table 1. Here N is the number of grid points in each direction of the periodic
box, kpis the wavenumber at which E(k, t = 0) peaks, time is normalized by the initial
eddy turnover time, 1/〈u2〉1/2

0 kp =1/kp , the initial Reynolds number Re is based on
the integral scale l = k−1

p , so that Re = 1/(kpν), and the simulations were continued
up to the time tmax. Note that, with this choice of integral scale, the initial value of
lbox/ l is 2πkp . (An alternative definition of the integral scale, that of the integral of
the longitudinal correlation function, would have l a factor of (2π)1/2 larger.) Since l

grows approximately as t2/7, and tmax =300, we would expect l to grow by a factor
of ∼ 5 during the simulations. Thus, by the end of the simulations we would expect
lbox/ l ∼ 2πkp/5 ∼ kp .

The so-called phase-shift method has been used for de-aliasing, in which the
maximum wavenumber kmax of the retained Fourier modes is about 21/2N/3, leading
to the approximate ratio of kmax/kp given in table 1. The spectrum E(k) was
calculated from shell averages, as described in Appendix B. Finally we note that
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Run number N kp Re tmax kmax/kp

1 1024 80 62.5 300 6
2 1024 40 250 300 12
3 1024 40 125 300 12

4 1024 80 31.3 300 6
5 1024 40 62.5 300 12
6 512 40 31.3 300 6

7 256 20 125 300 6
8 256 20 62.5 300 6

Table 1. Details of the simulations.
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Figure 2. I (t)/I (0) versus time for run 1 (kp = 80, Re = 62.5), run 2 (kp = 40, Re = 250) and
run 3 (kp = 40, Re = 125).

the values of I (t) and d2I/dt2 were estimated by fitting the curves E = Ik4/24π2 and
∂2E/∂t2 = (d2I/dt2)k4/24π2 to the data in the vicinity of k = 0.08kp .

Figures 2, 3, 4 and 5 show the results of run 1 (kp = 80, Re =62.5), run 2 (kp = 40,

Re = 250) and run 3 (kp =40, Re = 125). Figure 2 shows I (t)/I (0) for the three runs,
and figure 3 the corresponding exponents, m(t), in the decay law u2 ∼ t−m. Figures 4
and 5 show the evolution of E(k, t) and d2I/dt2 for run 1.

We observe, in figure 4, that E(k, t) maintains its E ∼ k4 form, as expected. Moreover,
figure 2 shows that, after an initial transient, I (t)/I (0) settles down to an (almost)
constant value in runs 1 and 3. This is achieved by t ∼ 250, and so we might refer
to t > 250 as the mature, or fully developed, state. (While there is still some time
dependence in run 2 at t = 300, this is small.) Figure 5 shows that, for 30 < t < 200,
d2I/dt2 scales approximately as t−2, but falls faster than t−2 as we approach the fully
developed state. This implies that, during the transition period, 30 < t < 200, I varies
as I (t) ∼ ln t . Thus the transient approach to the asymptotic state is approximately
logarithmic. Moreover, the fact that d2I/dt2 < 0 for t > 10 confirms that, during this
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Figure 3. m(t) versus time for run 1 (kp = 80, Re = 62.5), run 2 (kp = 40, Re = 250) and run
3 (kp = 40, Re = 125).
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Figure 4. E(k, t) for run 1 (kp = 80, Re = 62.5) from t = 0 up to t =300 in steps of �t = 10.

period, (2.8) is not valid, the implication being that the fourth-order cumulants do
not fall off fast enough for (2.8) to hold. (We shall return to these points in § 4.)

As I (t) settles down to an (almost) constant value, so does m(t). In the case of runs
2 and 3, which have the highest values of Re, m approaches the Kolmogorov law,
m = 10/7. For run 1, however, m asymptotes to a slightly higher value of ∼ 1.5. In
view of (1.18), which tells us that any time dependence of I (t) should reduce m below
10/7, we might anticipate that the behaviour of m in run 1 is a consequence of the
low value of Re. We shall confirm this next.
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Figure 5. d2I/dt2 for run 1 (kp = 80, Re = 62.5) from t = 0 up to t = 300. (a) Lin-lin plot of

d2I/dt2. (b) Log-log plot of −d2I/dt2. Note that d2I/dt2 ∼ −t−2 during the transient phase
30 < t < 200, but that d2I/dt2 falls faster than t−2 for t > 250.

In order to test the hypothesis that the deviation of m(t) from 10/7 in run 1
is a viscous effect, we have plotted m(t) for runs 1 to 6, in which Re varies from
31.3 up to 250 (figure 6). We observe that, for the runs at Re = 31.3 (runs 4 and 6)
m → ∼ 1.63, for Re =62.5 (runs 1 and 5) m → ∼ 1.50, while m → ∼ 10/7 for Re =125
and Re = 250. This suggests that Re must exceed ∼ 100 in order to observe the 10/7
decay law, irrespective of the behaviour of I (t).

Let us now consider the influence of kp on the results. Figure 7 shows E(k, t)
for Re = 62.5 and kp = 20, 40 , 80 (runs 1, 5 and 8). We observe that the evolution of
the small to intermediate scales is more or less independent of kp , suggesting that, if
kp � 20, periodicity is not a problematic boundary condition for those interested in
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Figure 6. m(t) versus time for runs 1 to 6. Re = 31.3 in runs 4 and 6,Re =62.5 in runs 1
and 5, Re =125 in run 3, and Re =250 in run 2.
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�t = 10. E(k, t) for run 5 (Re = 62.5, kp =40 ) for t = 0 up to t =288, in steps of �t = 32.

the equilibrium range. Whether or not periodicity influences the evolution of I (t) for
small kp is hard to say, since there is no discernible E ∼ k4 region for kp � 20. This
is clear from figure 8 which shows E(k) at t = 300 for the same three runs. Figure 9
shows E(k, t) for Re =125 and kp =20, 40 (runs 3 and 7). Again we observe that the
small to intermediate scales are independent of kp , but that there is no discernible
E ∼ k4 region for kp � 20.
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Figure 9. E(k, t) for run 3 (Re = 125, kp = 40) from t = 0 up to t = 300, in steps of �t =10.
E(k, t) for run 7 (Re = 125, kp = 20) from t = 0 up to t = 300, �t = 20.

Finally, figure 10 shows the normalized two-point vorticity correlation 〈ω · ω′〉(r, t)/
〈ω2〉, at different times in run 1 (Re = 62.5, kp = 80). Let us consider the curve
corresponding to t =300. The behaviour of 〈ω · ω′〉/〈ω2〉 for r � 0.2 (i.e. kpr � 16)
is approximately of the form 〈ω · ω′〉/〈ω2〉 ∼ exp[−a(kpr)2]. The correlation goes
negative at r ∼ 0.23 (kpr ∼ 18) and then slowly decays in magnitude. The maximum
(negative) value of the correlation in the range kpr > 18 is 0.01, falling to 0.001 for
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Figure 10. 〈ω · ω′〉(r)/〈ω2〉 versus r at t = 0, 100, 200, 300 for run 1 (Re = 62.5, kp = 80).

kpr > 65. Because the ratio of noise to signal becomes large for kpr � 1, it is difficult to
detect the power-law behaviour 〈ω · ω′〉(r, t)/〈ω2〉 ∼ A(t)(kpr)−8 predicted by Batchelor
& Proudman (1956) for kpr � 1. However plots of 〈u · u′〉, obtained by inverting its
Fourier transform partner, show some evidence that 〈u · u′〉 ∼ r−6, which is consistent
with 〈ω · ω′〉 ∼ r−8.

4. Discussion and conclusions
We have found that I tends to an (almost) constant value as the turbulence matures,

which indicates that the long-range interactions, as measured by [r4K]∞, die away.
Thus, at large times, we approach the classical (pre-Batchelor & Proudman) picture of
fully developed homogenous turbulence. It seems likely that this partial suppression
of the long-range triple correlations is a direct consequence of the gradual change
in the morphology of the vorticity field. Initially, when we have random Gaussian
modes, the vorticity field is devoid of structure. At later times the Navier–Stokes
equation has had a chance to pull the vorticity field into some kind of asymptotic
state, the precise form of which will depend on Re.

Quite why the long-range triple correlations are so weak in fully developed
turbulence we cannot say. We merely make the following observations. The Kármán–
Howarth equation (1.1) can be written in the form

∂
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(5.2)
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The two inviscid terms on the right of (5.2) lead directly to the two integrals on
the right of (2.3). In the analysis of Batchelor & Proudman (1956), as well as the
quasi-normal closure model, the contribution from the term 〈u′

x∂
2ux/∂t2〉 is zero,

corresponding to the neglect of the second integral on the right of (2.4). In our DNS,
however, we find that the contribution from 〈u′

x∂
2ux/∂t2〉 is non-zero, and that the

decline of [r4K]∞corresponds not so much to the vanishing of the contributions from
〈u′

x∂
2ux/∂t2〉 and 〈(∂ux/∂t)(∂u′

x/∂t)〉 individually, but rather to the cancellation of
these two terms. Thus the fact that, at large times, [r4K]∞ is small need not imply
that long-range pressure–velocity correlations of the form 〈u2

xp
′〉∞vanish.

We might also note that the approximate t−2 decline of d2I/dt2 at intermediate times
(30 < t < 200) could be interpreted as the large scales evolving in an approximately
self-similar manner. That is, the combination of (1.2) and (2.3) tells us that, if the
large scales are self-similar,

d2I/dt2 ∼ −u4l3 ∼ −Iu2/l2 ∼ −I/t2

since the integral scale, l, scales as l ∼ ut . At intermediate times I varies rather
slowly, confined to the range 2.2–2.7 in run 1. So self-similarity predicts something
close to d2I/dt2 ∼ −1/t2 during the transient. However this interpretation is not
entirely satisfactory since the flow structure is still evolving during this period and so
we have no right to assume self-similarity.

We end by noting that the question of the conservation (or lack of conservation)
of I (t) in mature turbulence is not just relevant to isotropic turbulence. Many other
systems, such as homogeneous MHD turbulence, and rotating stratified turbulence,
conserve one or more components of angular momentum. The fact that there is
evidence of the suppression of long-range velocity correlations in isotropic turbulence
gives us hope that these long-range interactions are also weak in these more complex
flows. If so, they will possess Loitsyansky-like invariants of the form of (1.4). (See the
discussion in Davidson 1997, 2004.)
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Appendix A. The legitimacy of using expansion (2.5)
The key assumption inherent in (2.6) is that we can use the expansion

1

|x∗ − x ′| =
1

|r∗ − r | =
1

r
− ∂

∂ri

(
1

r

)
r∗
i +

1

2

∂2

∂ri∂rj

(
1

r

)
r∗
i r

∗
j + O(r−4) (A 1)

to evaluate the leading-order far-field term of the non-local pressure equation

〈up(0)uq(0)p(x ′)〉 =
ρ

4π

∫
∂2

∂x∗
m∂x∗

n

[〈up(0)uq(0)u∗
mu∗

n〉 − 〈up(0)uq(0)〉〈u∗
mu∗

n〉] dx∗

|x∗ − x ′| .

(Here, for simplicity, we take x = 0 so that r∗ = x∗ − x = x∗ and r = x ′ − x = x ′.) In this
appendix we seek to establish the conditions under which this procedure is legitimate.
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Let us start by rewriting the integral equation as

Ipq(x ′) = 〈up(0)uq(0)p(x ′)〉 =

∫
∂2

∂x∗
m∂x∗

n

[Umnpq(x∗)]
dx∗

|x∗ − x ′| . (A 2)

From now on we shall drop the subscripts p and q , leaving them as understood.
Clearly, the use of expansion (A 1) is legitimate if Umn(x∗) decreases rapidly with
r∗ = | x∗|. Let us suppose that Umn(x∗) ∼ (r∗)2−n for r∗ � l, so that the integrand in
(A 2) decays as (r∗)−n. We shall now show that the use of (2.5) is legitimate provided
that n > 9.

Let us take r = | x ′ | � l and divide the domain of integration into three regions:
V1 is an inner sphere of radius a, where l � a � r; V2 is a spherical annulus of inner
radius a and outer radius r/2; and V3 is the rest of space. Next, for ease of notation,
we normalize all length scales by dividing by the integral scale l. In normalized units
we have r � 1 and 1 � a � r . We now choose a = rα, α < 1.

Let us consider the contribution to I from region V1, say I1. Since the domain is
bounded we may apply (A 1). Moreover, the fourth-order term in (A 1) is no greater
than ∼ a3/r4, and so we find,

I1(x ′) =
1

r

∫
V1

∂2Umn

∂x∗
m∂x∗

n

dx∗ − ∂

∂ri

(
1

r

) ∫
V1

x∗
i

∂2Umn

∂x∗
m∂x∗

n

dx∗

+
1

2

∂2

∂ri∂rj

(
1

r

) ∫
V1

x∗
i x

∗
j

∂2Umn

∂x∗
m∂x∗

n

dx∗ + O(a3/r4). (A 3)

Let us rewrite this as

I1 = G + O(a3/r4) (A 4)

where G represents the three integrals on the right of (A 3). Notice that the first two
integrals contained in G can be rewritten as surface integrals, which are of the order
of a3−n/r and a4−n/r2 respectively.

The contributions from V2 andV3 are readily estimated. Since the integrand in (A 2)
falls off as (r∗)−n in V2 andV3 we find that the corresponding integrals are, at most,
of the order of I2 ∼ a3−n/r and I3 ∼ r2−n, and so

r3|I − G| <C1

a3

r
+ C2

r2

an−3
=

C1

r1−3α
+

C2

rα(n−3)−2
(A 5)

where C1 is a constant, which could be zero. We now choose α = 3/n. The two
remainder terms on the right of (A 5) are then of equal order and tend to zero as
r → ∞, provided that n> 9. Thus, for n> 9, I − G is smaller than O(r−3). Under the
same conditions the first two integrals on the right of (A 3), which can be rewritten as
surface integrals, make contributions to (A 5) of the same order as (or smaller than)
the remainder terms. We conclude that, provided n> 9,

I (x ′) − 1

2

∂2

∂ri∂rj

(
1

r

)∫
V1

x∗
i x

∗
j

∂2Umn

∂x∗
m∂x∗

n

dx∗

is also smaller than O(r−3). Finally we rewrite the integrand of the integral above as
the sum of a divergence plus 2Uij . Once again we find that the surface integral makes
a contribution to (A 5) which is no larger than the remainder terms and so

I (x ′) − ∂2

∂ri∂rj

(
1

r

)∫
V1

Uij dx∗
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is also smaller than O(r−3). This is sufficient to justify the use of expansion (2.5).
We conclude therefore, that (2.8) is justified provided that the fourth-order cumulants
decay faster than r−7.

Appendix B. The method of shell averaging
In order to compute the band-averaged energy spectrum we first computed the

average e(q) over the surface of the sphere of radius q (q2 = 1, 2, 3 . . . . . .) in wave-
vector space,

e(q) =
1

Nq

∑
|k|=q

û(k) · û(−k),

where û(k) is the Fourier transform of the velocity field, Np is the number of grid
points on the shell, and

∑
|k|=p denotes the summation over the grid points on the

shell. We then compute an approximation for the band average spectrum E at k′ by

E(k′)

2πk′2 ≈ 1

nshell

k∑
band

e(q),

where nshell is the number of shells in the range k − 1/2 � q < k + 1/2,
∑k

band denotes

the sum over the range, i.e.
∑k

band ≡
∑

k−1/2�q<k+1/2, with k = 1, 2, 3 . . . . . . , and

k′ ≡ 1
nshell

∑k

band q .

REFERENCES

Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.

Batchelor, G. K. & Proudman, I. 1956 The large-scale structure of homogenous turbulence. Phil.
Trans. R. Soc. Lond. A 248, 369–405.

Birkhoff, G. 1954 Fourier synthesis of homogeneous turbulence. Commun. Pure Appl. Maths 7,
19–44.

Chasnov, J. R. 1993 Computation of the Loitsyansky integral in decaying isotropic turbulence.
Phys. Fluids A 5, 2579–2581.

Davidson, P. A. 1997 The role of angular momentum in the magnetic damping of turbulence.
J. Fluid Mech. 336, 123–150.

Davidson, P. A. 2000 Was Loitsyansky correct? a review of the arguments. J. Turbulence 1, 006.

Davidson, P. A. 2004 Turbulence: An Introduction for Scientists and Engineers. Oxford University
Press.

Eyink, G. L. & Thomson, D. J. 2000 Free decay of turbulence and the breakdown of self-similarity.
Phys. Fluids 12, 477–479.

Herring, J. R. Kimura, Y., James, R., Clyne, J. & Davidson, P. A. 2005 Statistical and dynamical
questions in stratified turbulence. In Mathematical and Physical Theory of Turbulence (ed. S.
Shivamoggi). Taylor Francis.

Jackson, J. D. 1975 Classical Electrodynamics, 2nd Edn. Wiley.

Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K. & Uno, A. 2004 High resolution direct
numerical simulation of turbulence: spectra of 4th order velocity moments. In IUTAM
Symposium on Reynolds Number Scaling in Turbulent Flows (ed. A. J. Smits), p. 155, Kluwer.

Kaneda, Y. & Ishihara, T. 2006 High-resolution direct numerical simulation of turbulence.
J. Turbulence 7, 1–17.

Kolmogorov, A. N. 1941 On the degeneration of isotropic turbulence in an incompressible viscous
fluid. Dokl. Akad. Nauk. SSSR 31(6), 538–541.

Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics, 1st Edn. Pergamon.

Loitsyansky, L. G. 1939 Some basic laws for isotropic turbulent flow. Trudy Tsentr. Aero.-Giedrodin
Inst. 440, 3–23.



Decay of isotropic turbulence 475

Ossia, S. & Lesieur, M. 2000 Energy backscatter in large-eddy simulations of three-dimensional
incompressible isotropic turbulence. J. Turbulence 1, 010.

Proudman, I. & Reid, W. H. 1954 On the decay of a normally distributed and homogeneous
turbulent velocity field. Phil. Trans. R. Soc. Lond. A 247, 163–189.

Ruelle, D. 1990 Is there screening in turbulence? J. Statist. Phys. 61, 865–868.

Saffman, P. G. 1967 The large-scale structure of homogeneous turbulence. J. Fluid Mech. 27,
581–593.

Van Atta, C. W. & Yeh, T. T. 1970 Some measurements of multi-point time correlations in grid
turbulence. J. Fluid Mech. 41, 169–178.




